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Two-component Fermi systems. I. Fluid coupled cluster theory 
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Abstract. This paper is the first of two in which the coupled cluster method (CCM) or 
exp(S) formalism is applied to two-component Fermi systems, the aim being to describe 
real metals and superconductivity. In this paper we concentrate on exact results and restrict 
ourselves to a ring approximation, applicable essentially to a high-density regime. We 
show that in the ground-state formalism the random phase approximation (RPA) can be 
formulated as a system of coupled, bilinear integral equations satisfied by functions 
associated with the so-called four-point functions of the system which provide a measure 
of the two-particle-two-hole component in the true ground-state wavefunction. These 
equations are analysed in the dimensionless parameter formed by the ratio of the species 
masses and exact analytic solutions obtained. For Coulombic potentials ( V,, V,, = V ; , )  
we show that the exact analytic solution is unique and obtain an expression for the 
correlation energy. For non-Coulombic potentials ( V,, V,, # V:2)  we indicate how to obtain 
a possible analytic solution. An RPA-like treatment of the one- and two-body equations 
in the excited-state formalism is provided for completeness. 

1. Introduction 

Two-component systems involving two types of particles, namely ‘1’ and ‘2’, interacting 
via the repulsive potentials VI, and V2, and the attractive potential VIZ, all assumed 
to possess a Fourier transform, are natural generalisations of one-component systems. 
They provide a framework within which to study systems such as real metals and 
electron-hole plasmas in photoexcited semiconductors, and phenomena such as Bar- 
deen-Cooper-Schrieffer ( BCS) superconductivity (Bardeen er a1 1957, Bogoliubov 1958, 
Valatin 1958). 

A measure of the density of a degenerate ensemble of identical charged particles 
is provided by the dimensionless parameter rs (the smallness parameter in a perturba- 
tion-theoretic treatment), defined as the ratio of the average interparticle spacing r, to 
the Bohr radius a,. Exact calculations have been performed in the high density ( rs + 0) 
(Gell-Mann and Brueckner 1957) and low density ( rs -$ CO) (Wigner 1934, 1938) limits, 
the aim being to interpolate between them to describe real metals which have densities 
2 d r, G 6 .  The early calculations with this goal in mind were mainly perturbational or 
variational in character (cf Bishop and Lurhmann 1978, Lahoz 1986 for a review). 
Recently, the coupled cluster method (CCM) has been applied to this problem with 
great success in obtaining both analytic and numerical (Bishop and Liihrmann 1978, 
1982, Emrich and Zabolitzky 1984) results of great quality. This suggests that real 
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metals, made up of electrons and ions, may be accurately described by a two-component 
CCM formalism. 

It is well known that the effective attractive interaction between electrons just inside 
the Fermi surface sufficient for a non-zero gap, i.e. superconducting solutions in BCS 

theory (cf Fetter and Walecka 1971), can be brought about by the intervention of a 
different type of particle (Cooper 1956). In the standard one-component treatment 
(Bogoliubov 1958, Valatin 1958) an effective attractive interaction, duly accounted for, 
is assumed from the beginning and the well known results obtained. The nature of 
BCS superconductivity, however, suggests that a two-component treatment will provide 
a better understanding of this phenomenon. 

The CCM, based on the exp( S )  ansatz of Hubbard (1957), was originated by Coester 
and Kummel(l960, Coester 1958, 1969). In the so-called fluid ground state the normal 
CCM (to differentiate it from the extended CCM of Arponen (1983)) has been applied 
with great success to a wide variety of many-body problems including: (i) closed-shell 
atomic nuclei (Zabolitzky 1974a, b, Kummel et a1 1978); (ii) the electron gas (Bishop 
and Luhrmann 1978, 1982, Emrich and Zabolitzky 1984); and (iii) examples from 
quantum chemistry ( t i i e k  1966, 1969, Lindgren 1978, KvasniEka et a1 1982, Szalewicz 
et a1 1984). 

The extension to excited states has been via two formalisms. The first is due to 
Offermann, Kummel and Ey (OKE),  and was developed to deal with open-shell nuclear 
systems. It now provides a direct microscopic foundation to the very successful 
phenomenological shell-model calculations for the excited states of atomic nuclei 
(Offermann et a1 1976, Offermann 1975,1976). The second approach is due to Emrich, 
and it is this which we henceforth refer to as the fluid excited-state formalism. I t  can 
be regarded as the natural extension of the fluid ground state to the excited states, at 
least for homogeneous systems (Emrich 1981a, b), and it is a priori expected to prove 
as successful as its fluid ground-state counterpart. 

Of great importance has been the development by Arponen (1983) of an exp(S) 
formalism derived from a variational principle and seemingly a generalisation of the 
normal CCM. This formalism allows one to obtain the expectation values of arbitrary 
operators and appears capable of handling phase transitions in simple models, e.g. 
LMG (Lipkin et a1 1965a, b, c); however, it has not yet proved capable of handling 
more complicated systems such as liquid 4He, although work is in progress (Robinson 
1986). 

In the fermionic fluid ground-state formalism one generally chooses a single Slater 
determinant of occupied states as a model state and makes the usual exp(S) ansatz 
for the true ground-state wavefunction, S being an operator containing 1-body, 2- 
body,. . . , N-body pieces. It can be shown (Bishop and Kummel 1987) that the 
wavefunction obtained by correlating all possible n-tuplets from the filled Fermi sea 
is given precisely by the exp(S) ansatz, providing physical justification for it and 
indicating that the n-body operator S,  is a true correlation operator for n particle-hole 
(p-h) pairs. The ansatz is then used to decompose the N-body Schrodinger equation 
into a set of N coupled, non-linear equations for the so-called subsystem amplitudes 
S,, the nth equation for S,  in the hierarchy being coupled to the other amplitudes Si 
(1 G i G n + j )  for a Hamiltonian containing up toj-body interaction terms. By iterating 
these equations one can make contact with perturbation theory by deriving quantities 
expressible in Goldstone diagrams. 

In the fluid excited-state formalism one generally describes the true excited-state 
wavefunction as a linear combination of lp- lh ,  2p-2h,. . . , Np-Nh  excitations of the 
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true ground state by introducing a new type of amplitude SE, similar to the ground 
state S,,. This ansatz is then used to decompose the excited-state N-body Schrodinger 
equation into a hierarchy of N coupled, linear eigenvalue equations for the S‘, and 
excitation energies formally similar to the ground-state one. 

Practical results require truncation of these hierarchies using, if possible, a physically 
motivated procedure. In this paper we employ the SUBn truncation, where we set 
Si = 0 for i > n in the ground-state formalism, and the SUB( m, n) truncation where 
we set S ; =  Sf= 0 for i >  m, j >  n, with superscripts e and g respectively referring to 
excited- and ground-state quantities in the excited-state formalism. We note that the 
SUB2 truncation is not simply Brueckner theory but much more, containing both it 
and most other well known approximations as well (Bishop and Liihrmann 1978). 

Besides having a very direct physical interpretation, the CCM avoids the mixing of 
‘small’, i.e. microscopic, terms with ‘large’ terms (Kiimmel et a1 1978), thereby prevent- 
ing numerical instabilities and making the CCM computationally extremely efficient. 
Diagrammatically this is equivalent to removing the ‘unlinked’ terms from the Hamil- 
tonian so that only ‘linked’ terms remain. These points and their physical background 
are discussed by Lahoz (1986). 

The essence of the CCM, in contrast for example with the configuration-interaction 
(CI)  method (Nesbet 1958), lies with the increased degree of locality in the description 
of many-body correlation phenomena. The C I  method contains unlinked diagrams for 
the energy and thereby suffers from the size-extensivity problem (Primas 1965, Bartlett 
and Purvis 1980, Kummel 1984). This difficulty is fully resolved in the CCM. Together 
with the generalised time-ordering properties of the associated generalised tree 
diagrams, these features have proved to be extremely useful not only for large systems 
but also for systems with a small number of degrees of freedom (Kiimmel et al 1978, 
Emrich 1981a, b, Kiimmel 1984). 

The CCM, extremely accurate by comparison with Green Function Monte Carlo 
(GFMC) calculations (Ceperley and Alder 1980, Bishop and Liihrmann 1982, Emrich 
and Zabolitzky 1984), and providing more efficient numerical calculations than alterna- 
tive methods (Bishop and Kiimmel 1987), is ready for generalisation to two-component 
systems, where variational methods have been applied (Chakraborty and Pietilainen 
1982, Chakraborty et a1 1983). 

Section 2 of this paper concerns the methodology of the CCM emphasising the 
choice of model state and truncation scheme. Sections 3-5 are devoted to the ground 
state, where we treat the Schrodinger equation in a random-phase approximation ( RPA) 

SUB2 calculation for potentials Vll (q) ,  V, , (q ) ,  V12(q) such that their q = 0 component, 
associated with long-range interactions, does not contribute. This involves using the 
theory of Muskhelishvili-Omnks integral equations to solve a set of coupled bilinear 
integral equations for the three-point functions associated with the problem. Crucial 
in this analysis is the role played by the dielectric function (cf Fetter and Walecka 
1971) associated with each type of particle. For potentials satisfying VI, VZ2= Vf,, we 
obtain a unique solution and an expression for the correlation energy which we analyse 
in terms of the dimensionless mass ratio M = m z / m l .  The cases M = 1, M = 1836, 
providing descriptions of an electron-hole system and a hydrogen plasma respectively, 
are investigated. The limit M+co is also taken (cf the Born-Oppenheimer (1927) 
approximation) to verify that our results make physical sense. For potentials satisfying 
VI, VZ2 Z V:2, we obtain equations for the three-point functions and indicate how to 
obtain a formal solution. Sections 6 and 7 concern the excited states, where we derive 
the one- and two-body equations, treat the Schrodinger equation in an RPA-like 
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SUB( 1,2) calculation on the one-body equation, and obtain the relation, well known 
from two-body potential theory (Schiff 1968), linking the zeros of the ground-state 
RPA dielectric function to the poles of the relevant three-point function. Section 8 
concerns conclusions and further work. 

2. Methodology 

Implementation of the CCM involves essentially two choices: (i) the inputs to the 
method, amounting largely to a choice of starting wavefunctions (model states); and 
(ii) the choice of decomposition of the equations into a natural hierarchy, amounting 
in practice to a particular approximation or truncation scheme. Although in principle 
these two choices are independent of each other, in practice they are intimately 
connected, for particular choices must depend not only on the individual physical 
system, but also on which of its possible phases is under study. 

When solving the Schrodinger equation HI*) = E l q ) ,  it is common practice to 
construct first a model state guided by physical and mathematical criteria and use it 
to obtain the true ground state by means of a perturbation-like procedure. This is the 
CCM approach where, having chosen a model state I@), one makes the exp(S) ansatz, 
19) = exp(S)I@), and attempts to solve 19) in a particular approximation. Intuitively, 
the better I@) is, the smaller the correlations S, need to be. 

Clearly, the CCM equations must be truncated to obtain practical results. Three 
schemes have been well developed in the literature: (i)  the SUBn truncation (Bishop 
and Luhrmann 1978, Emrich 1981a, b, Emrich and Zabolitzky 1984); (i i)  the x,, or 
Bochum truncation in closed-shell atomic nuclei (Zabolitzky 1974a, b, Kummel et a1 
1978); (iii) the Offermann, Kummel and Ey (OKE) approximation in open-shell atomic 
nuclei (Offermann et al 1976, Offermann 1975, 1976). Recently a super-SUBn trunca- 
tion has been developed to tackle ,He (Robinson 1986). 

In relatively low-density and/or weakly interacting systems, rarely do more than 
two or three particles lift themselves simultaneously out of the Fermi sea, which leads 
to the SUBn truncation where all S,,, with m > n are set to zero and the remaining n 
coupled equations solved as accurately as possible. Similar considerations lead to the 
SUB( m, n )  truncation in the excited states, where the ground- and excited-state 
equations are solved in the SUBn and SUBm scheme respectively. In systems where 
the Coulombic interaction is weak (i.e. the correlation energy is small), S3 and S, 
appear to be small correlations, which suggests that the method converges quickly 
(Kummel 1984). On the other hand, recent work suggests that S3 can have a non- 
negligible effect (Szalewicz et a1 1984, Haque and Kaldor 1987) if one wants extremely 
accurate results. 

One can show that the fluid ground-state formalism corresponds to the overlap 
(@19)#0 (cf Lahoz 1986), and that the fluid excited-state formalism corresponds to 
the overlap (@lY) = 0 (Emrich 1981a, b). Although we label these overlaps as the fluid 
ground and excited states, there is no certainty that the exact state obtained in the 
former is the system’s true ground state. All we are guaranteed is that it satisfies 
(019.J = 1; in particular our model state may be so ill-chosen that the state obtained 
bears no resemblance to the true ground state. This is illustrated by the work of Emrich 
(1981a, b), Stevens (1984) and Bishop (1985) who obtain states having energies 
lower than that described as the ‘ground state’. The presence of these ‘de-excited 
states’ is entirely due to the choice of I@) and suggests that a particular Fermi sea 
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model state may not be the best choice. Amongst the ideas behind the choice of a 
new model state (Lahoz 1986) is that of symmetry breaking. In particular one can 
break particle number conservation as is done in BCS theory (Bardeen et a1 1957). We 
break this symmetry when choosing I Q B c s )  as our model state in paper I1 (Bishop and 
Lahoz 1987). 

As the true ground state must either have zero or non-zero overlap with the model 
state, having both the above formalisms in principle enables one to find it. Further, 
by yielding ‘de-excited’ many-body states the excited-state formalism can provide a 
signal of any associated phase transition. 

The richness of the CCM immediately becomes apparent even at the SUB2 level of 
approximation, where it is seen (Bishop and Luhrmann 1978) to contain several well 
known approximations as subapproximations to itself: (i) the random-phase approxi- 
mation RPA (Bohm and Pines 1953, Gell-Mann and Brueckner 1957) and its subapproxi- 
mations the Tamm-Dancoff (TDA; Tamm 1945, Dancoff 1950) and Macke (1950) 
approximations; (ii) the Bethe-Goldstone (1957) approximation; (iii) the analogous 
Galitskii approximation (Mehta 1959, Chisholm and Squires 1959); and (iv) the 
standard Brueckner-Bethe-Goldstone theory (Fetter and Walecka 1971). The SUB2 
is even richer than the fully self-consistent union of the above approximations as it 
contains extra classes of terms to preserve the overall antisymmetry required by 
Fermi-Dirac statistics. Thus it is not surprising that the full SUB2 approximation is 
algebraically complex. However, it is our belief that its underlying conceptual simplicity 
and the enormous amount of physics contained in it more than compensate for this 
complexity, and make the SUB2 (and CCM) a formidable technique. This SUB2 
complexity makes it preferable to investigate those of its subapproximations susceptible 
to exact solution, in the hope that they will enable us to understand the wider problem 
and check subsequent numerical approximations. In this spirit we perform an RPA 
SUB2 treatment in the ground-state formalism and an RPA-like SUB( 1,2) treatment 
in the excited-state formalism. 

A CCM problem can be tackled in several ways (Lahoz 1986). We investigate 
two-component Coulomb systems by choosing different model states to deal with Fermi 
fluids in paper I and Fermi superfluids in paper 11. 

3. Derivation of RPA bilinear integral equations in the SUB2 approximation 

Consider a fermion system with two species of particles, ‘1’ and ‘2’. The system’s 
Hamiltonian is 

N ,  N ,  N ,  N2 

H =  1 = 1 , 2  2 ( k = l  T i ( & ) + ;  k # l = l  2 ~ i ( x k , X l ) ) +  k = l  I = 1  c v 1 2 ( x k , x l )  (3.1) 

where i refers to a particle of species i, Ni to the number of particles of species i with 
NI + N2 = N, and T and V are kinetic and potential terms, respectively. 

Consider the subsystem amplitudes Y,,, n S N for a system of N fermions with ni 
particles of species i such that nl  + n2 = n, and with true ground-state wavefunction 
IY). In terms of a model wavefunction I Q F )  built out of the N orthonormalised 
single-particle states IY,), . . . , J Y ~ , ) ;  J p l ) , .  . . , I ~ N , ) = I A ~ ) ,  . . . , I A N )  we have 
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where 10) is the vacuum state and the a ~ , ( a ~ , )  are a set of fermion creation operators 
for I Y , )  (lp,)) which correspond to states normally occupied by species 1 (2) with 

[a: , ,  4 1  = 0 i =  1, .  . . , N l ; j =  1,. . . , N 2 .  (3 .3)  

We introduce the following terminology: 
(i) a‘, p’,  Y refer to particle-1 states; 
(i i)  p’, d, p refer to particle-2 states; 
(iii) y, 7, A refer to particle-1 and/or 2 states; 
(iv) A, v, p refer to states normally occupied (i.e. states filled in IOF)); 
(v) 7, p’ ,  a’ refer to states normally unoccupied; 
(vi) y, a’, p’ refer to both. 
If there are only particles of type i we have a’+ cy, p ’ +  p ,  /3’+ /3, U ’ +  U. 

The subsystem amplitudes are defined thus: 

(71. .  ~ ~ n l * n I A l  * 9 * A n ) A = ( @ F l a X I  . . . a a n a y , ,  * ay,l*) (3.4) 

where 19) is normalised by (O#) = 1 and the subscript A indicates an antisymmetrised 
state. This antisymmetrisation is to be performed only between states representing like 
particles. 

Equation (3.4) can be interpreted as representing the amplitude that particles 
‘normally’ in states A I ,  . . . , A, are in fact in states y1 , . . , , y, with all other particles 
in their normally occupied states A , + 1 , .  . . , A N .  

One can see (Luhrmann 1977) that knowledge of 9, and V2 is sufficient to evaluate 
the ground-state energy E = (@,IHIP) = (QFI(T+ V ) l 9 ) :  

E ( Y ~ T l ~ i ~ V ) + ~ ( ~ ~ ~ Z 9 1 ~ ~ ) + f  ( y y ‘ l V I I ~ Z ~ V V ’ ) A  
Y P Y Y ’  

where we assume that particles interact only via two-body potentials. The notation 
employed in (3.5) and hereafter implies that a complete set of states may be inserted 
whenever necessary, e.g. 

To derive the formal CCM equations consider the Schrodinger equation for the ampli- 
tudes 9,: 

(3.7) 

We require a decomposition of the amplitudes 9, to eliminate all macroscopic 
terms (those proportional to N )  in the essentially microscopic equations. To accom- 
plish this we write 

IW = exp(S)I@d ( 3 . 8 a )  

(OFIU;]. . . U ; , , U ? ~ .  . . u ~ , H ~ ’ P ) = E ( ~ ~ .  . . y,lV,lAl.. . A n ) A .  

where 
N s= s, 

n = l  
(3 .86 )  
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Insertion of equations (3.8) in (3.4) yields the decompositions: 

( y W 1 I A )  = (rlA)+(rlS1P) (3.9a) 

(rl y2Iq2IA lA2)A = (( rll*l1 A I ) (  Y21q'llA2))A + (71 Y21S21A l A Z ) A  (3.9b) 

( Y I % ? ' ~ ~ . I J ( ~ ~ A I A ~ A ~ ) A  = ( ( ~ l ~ * l ~ ~ l ) ( ~ 2 ~ ~ ~ ~ ~ 2 ) ( ~ 3 ~ * 1 ~ ~ 3 ) ) A  

+ S1z3((Y1Y2/S21h1h~)(Y31q1lh3))~+(Y1Y~Y31S31h1A2h3)~ (3.9c) 

where SIZ3 is the standard cyclic permutation operator and the antisymmetrisation is 
only to be performed on the ket states. Equation (3.9a) shows that (ylSllA) is that 
part of the amplitude (ylYllA) not given by the single-particle amplitude ( y l A )  = 8?,,. 
As all other normally occupied states are in fact occupied, the Pauli principle dictates 
that the label y in (ylSllA) must equal some normally unoccupied label. Similar 
considerations apply to all correlation amplitudes S,, which is reflected in the ansatz 
(3 .8)  where only normally unoccupied state labels appear in the bra labels. From 
equation (3.9b) (IS21) is that part of the two-body subsystem amplitude (lP21) which 
cannot be described in terms of one-body subsystem amplitudes (lVll), which leads 
one to call it the two-body correlation amplitude. 

To obtain the exact one- and two-body equations we must evaluate (3.7) (Lahoz 
1986). 

The one-body equation for a two-component fermion system is 

(3.10) 
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Finally, the numbers in parentheses attached to the operators T, and Vij in equations 
(3.10) and (3.11) denote the quantum labels on the corresponding bra and ket counting 
from left to right on which the operator acts. The quantity hA,A; in equations (3.10) 
and (3.11) is termed the hole energy for particles of species i and defined to be 

hA,A;=(h i (T iq l IA{)+~  (Aih:'( Viiq2lh:h:)~+ 1 (hihyl Vc'P2\AfiA:). (3.12) 
A;  A; 

j f i  

In equations (3.10) and (3.11) there are three types of ((S21): S2 for species 1-1,2-2,1-2. 
The general structure of the n-body equation is that the equation for S,  involves 

Sn+, and Sn+2. Clearly, in order to use the equations in practice a truncation scheme 
is necessary. We use the SUB2 approximation where all Si are set to zero for i > 2 .  

Consider an infinite, homogeneous and overall neutral system of spin-4 particles 
consisting of two species, i = 1, 2, with masses mi and charges e i .  These particles 
interact via the following pairwise spin-independent local potentials: Vii between 
species i-i, V12 between species 1-2, written in momentum space as follows: 

(ki ,  si; k i ,  Si1 V,jlk;, S;; k ; ,  ST)= V,i(ki - k ~ ) S k , + k ; , k : + k , ~ S r , s ~ ~ s ~ s ~  

(kl > SI; k2, s21 V121k:, k; ,  s;>= - k : ) 8 k l + k z , k ; + k i s s , s ; S 1 2 s ; .  

Choose the single-particle basis to consist of plane-wave states with quantum labels 

lJ = ( k l ,  SI)  Ikll < k F I  P = ( k 2 9 s 2 )  I k21( kF2 

P = (k19 S I )  l k 1 l  > kFI U =  (k2, s2) I k 2 0  kF2 

where si is a spin label with possible values or J, ki and hkF, are the wavenumber 
and Fermi momentum respectively of the plane-wave states for species- i particles. 
Introduce the convenient notation: 

Z ; t $ k , ( q ) s ( k l + q ,  h - 4 ,  s21S21kl, s l ;  k 2 ,  s2) 

where each of the three (IS2/) can have the two (generally unequal) cases SIT=S$l  
(parallel spins) and SIJ = Si' (antiparallel spins). By conservation of momentum SI = 0. 

Implementing the SUB2 approximation in equation (3.1 1) gives the following 
expressions: 

( h 2/2m1 )[I k l  + q( *  + 1 k', - qI2 - k: - k ' 1 2 1 x i l ; , ' k ;  ( 4 )  + T t P A  + + T$HP 

(3.14) 

+TgPA+TfHP+.. .+T:E2=0. (3.16) 
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r 

x n (  k ; ) n (  k T ) A ( k ;  - q ) f i (  k y  + q )  (3.17) 

where n ( k , ) =  e ( k F -  ki), i i (ki)= e (k, - kF) and O(x) is the step function, defined to 
equal one (zero) for x greater (less) than zero. The remaining terms, where we employ 
the one-component case nomenclature, can be found in Lahoz (1986) .  

Using the convention of conservation of total momentum and third component of 
spin at every vertex and that arrows pointing upwards (downwards) denote 'particle 
states' ('hole states') associated with normally unoccupied (occupied) states with 
momenta outside (inside) the Fermi sphere, plus the definitions 

a x, r2 

------e------ E par t i c le  species 2 

we can associate diagrams with equation (3.17). These are given by figure 1 .  Figures 
2 and 3 are associated with the remaining terms for which explicit equations may be 
similarly derived. 

We now solve (3.14)-(3.16) in the RPA: 

(3.18) 
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Figure 1. The diagrammatic representation of the RPA terms of equation (3.17). The terms 
which have M R  underneath them represent two separate terms, one as shown and the other 
obtained by mirror reflection. 

MR 

Figure 2. Same as figure 1 but for T:,,.,. 

Figure 3. Same as figure 1 but for TEPA. 

Diagrammatically, the equation for S = X has the representation given by figure 4. 
Similar representations apply to equation (3.18) with S = Y, Z. Clearly, the above RPA 

equations are responsible for generating the two-component analogue of the usual 
one-component ring diagrams. 

We introduce the functions 

f : , ' (q)  xZ,klk;(q) 
- k ; E I ' ,  

(3.19) 

Figure 4. The diagrammatic representation of equation (3.18) with S =  X and d ,  = 
( h 2 / m , ) [ q .  ( k ,  - kl + q) l .  
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where the (IS21) have been assumed spin independent, i.e. Sif = SIi  = S2 (as is valid in 
the RPA but not in the exact solution), the first (second) superscript denotes the open 
(closed) legs of the relevant four-point function (IS&, and the integration regions r, 
are defined by 

(3.20) 

Use of the equality X , , , + ; ( q )  = x2;-k;,-kl(q) which follows from the defining relation 
and Galilean invariance and its counterparts for Y2,  Z2 yields 

(3.21) 

where for ease of notation we drop the q dependence of the potentials. Summing both 
sides of (3.24) over - k :  E T I ,  using equations (3.21) and (3.23), changing the sum to 
an integral in the standard manner and introducing the more symmetric momentum 
variables K,, K:  by 

k, = K, - i q  k : =  -K:+$q 
yields the integral equation 

(3.25) 

where we have defined 
, ~ ~ = 2 7 ~ ~ h ’ / m , 0  
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Similar analyses on equation (3.18) for S = Y and Z yield 

where we have defined 

M = m 2 / m ,  

H l ( K 2 )  = V22h(K2)+ VIZfi(K2) 

H2(K2)  = Vl2h(K2)+ Vllfi(K2). 

Equations (3.26)-(3.29), which are four non-linear coupled integral equations for the 
four RPA particle-hole vertex functions g(K1), . . . , h ( ~ ~ ) ,  are the basic two-component 
CCM RPA equations since all other quantities of interest may be obtained from them. 
As we solve the RPA in terms of the three-point functions GI( K ~ ) ,  . . . , H2( K ~ )  two cases 
arise: 

(i) VI, V2, = V:,-the Coulombic potential case 
(ii) VI V2, # V;,--the non-Coulombic potential case 

which are related to the matrix of the potentials: 

being singular or non-singular. 
The mathematical techniques involved in solving both cases are essentially the 

same; however, in the former the equations simplify. The non-Coulombic case analysis 
is inapplicable to Coulombic potentials as the matrix V becomes singular. 

4. RPA treatment of the Coulombic potential case 

In the Coulombic potential case, i.e. VI, V2, = V;2, we have 

GZ(K1) = (V12/ Vl1)Gl(Kl) H Z ( K 2 )  = (V*2/ VZZ)Hl(K2) (4.1) 

and it is sufficient to solve for G ] ( K , )  and H , ( K ~ ) .  
Combining (3.26)-(3.29) with (4.1) yields 

(4.3) 
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where we have rendered all momenta dimensionless by writing them in terms of kFl;  
Xi = V,,(qkF,) and have defined 

P P O /  kF, 

Equations (4.2) and (4.3) are exactly linearised by employing a generalisation of 
the trick used in the one-component case (Bishop and Luhrmann 1978). First we 
multiply (4.2) by [ q  * ( K ~  + K:)]- '  and integrate with respect to K~ E Fl;  then we multiply 
(4.3) by [ q -  ( K ~ +  MK:)]-' and integrate with respect to K ~ E  F2. 

The above integrations and use of equations (4.2) and (4.3) yields the functional 
relation 

where the known function K ( K ~ )  is defined by the relation 

A similar analysis yields the functional relation 

= L ( K 2 )  
v;2 

HI(KZ)Hl(--KZ) 
(4.6) 

where L(K>)  is defined by L ( K J  = K ( K ~ /  M) .  Substitution of (4.4) in (4.2) and (4.6) 
in (4.3) yields the linear equations 

(4.7) 

Decoupling of the above equations is now accomplished by introducing the integral 
equations 

(4.9) 

(4.10) 
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(which are linear in lo' and JO' respectively) and using the one-component case trick 
(Bishop and Liihrmann 1978). We multiply (4.7) by [ K ( K I ) I O ( K 1 ) q .  ( K ~  -K;/M)]-' 
and integrate with respect to K~ E I f , ,  and multiply (4.8) by [ L ( K ~ ) J ~ ( K ~ ) ~ *  ( K ~ -  

MK;)]-' and integrate with respect to K ~ E  r,. The first integration yields after using 
(4.8) and (4.9): 

Similarly, the second integration yields 

(4.1 1 )  

(4.12) 

(4.13) 

(4.14) 

It can be seen from equations (4.1 1 )  and (4.12) that the two-component RPA Coulombic 
potential case reduces to linear integral equations possessing the same structure as 
their one-component counterpart (Bishop and Liihrmann 1978), the solution of which 
is well known. 

Consider the case where all three potentials are bare Coulombic: 

Omission of the q = 0 case is physically justified as this contribution from the potentials 
can be shown to cancel by means of an appropriate convergence factor. 

Introduce the following dimensionless parameters: 

where k,, = ( 3 7 ~ ~ p ; ) ~ ' ~ ,  pi is the particle number density for species i, r, is the average 
interparticle spacing of species i defined by pi = (47rr:/3)-' and ai is the Bohr radius 
of species i defined by ai = h2/mief ,  and make the simplifying assumptions k,, = k,, = 
k,; e, = -e ,  = e, so that 

Equations (4.11) and (4.12) are linear but singular in the integration regimes K ;  E P i ,  
so their kernels are not square integrable and the usual Fredholm theory of linear 
integral equations is inapplicable. 

However, solution of (4.1 1 )  and (4.12) is possible provided the:orrect cpordinate 
system is chosen. Analysis of (4.11) and (4.12) indicates that G 1 ( ~ , ) ,  H 1 ( ~ * )  are 
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to us are K ~ ,  q2 and ~ - q .  As K ( K , )  is independent 0: K : ,  and, we regard q as a 
parameter, equations (4.11) and (4.12) have a solution G, (K , )  = G , ( K ,  81, f i , ( ~ ~ )  = 
f i , ( ~ ~  - 8 ) .  Clearly, the natural coordinate system in which to solve (4.11) and (4.12) 
is a cylindrical polar system with axis along the direction 4 and, for obvious reasons 
of symmetry, with the origin at the midpoint of the axis joining the centres of the unit 
Fermi spheres implied by the integration regime ri. 

In these cylindrical polar coordinates (xi, p i ,  ei) where xi = K~ * 8, the integrations 
expressed in equations (4.5), (4.6), (4.11) and (4.12) can be written (Lahoz 1986) 

lr, dKf(Xi) = 2 r q  

0 6 xi s 1 - f q ,  q < 2 
1 - $4 s xi 5 1 + $4, q < 2 
f q  - 1 xi ++ 1, q 3 2 

(4.15) [ 1 - (f q - Xi)’]/ 2q 
[1 - ( f q  -x,)2]/2q 

Iq(x, > 0) = 

CO otherwise 

for an arbitrary function f(xi) .  
Writing (4.11) and (4.12) in cylindrical polar coordinates strongly suggests the need 

to make an appeal to analytic continuation to solve the resulting equations. This we 
do, and defining functions of a complex variable K(z,) ,  L(z2): 

K(z1 )=1+L[{  d x { f i , ( x i ) ( - + L )  1 
P i, x:+z, X { - Z ,  

+I L dx;Mfi2(x;)( x i +  Mz, + X; - Mz, 
( 4 . 1 6 ~ )  

L(z2)= K(z2IM) P=PPlV,,(qkd (4.16 b )  

we can define functions of a complex variable &,(z,), fi1(z2) which satisfy 

(4.17) 

(4.18) 

fi ,(x2) = lim fil(x2*iy2) x 2 ~ i 2 , x 2 / M ~ i 2 .  
Y Z - 0  

Converting (4.17) and (4.18) into Muskhelishvili-Omnks equations (1953, 1958) and 
using the one-component results (Bishop and Luhrmann 1978) yields the general 
solutions (Lahoz 1986): 

G I ( Z I )  = VI, e x ~ [ u ( z i ) l [ l +  P(zi)IJo(Mzi)/K(zi) 

Hi(z2) = V22 exp[u(z2)1[1+ Q(z2)lZo(zz/M)/L(~~) 

(4.19) 

(4.20) 
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where 

K,(x,) = lim K(xl  rtie) 
E'O 

L*(x2) = K*(X2/M) (4.21) 

and P ( z l )  ( Q ( z 2 ) )  are arbitrary functions analytic in the entire complex z I  ( z 2 )  pla_ne 
with the possible exceptions of singularities at either or both of the ends of i, (ML, ) .  
Ln indicates any value of the multivalued logarithmic function which is continuous 
on 2, ( M L ~ ) .  

By making use of the functional relations (4.4)-(4.6) in general form: 

(4.22) 

(4.23) 

we now show that for all finite M t 1 a unique solution for G , ( z , )  and H 1 ( z 2 )  exists. 
Having obtained solutions for finite M we consider the case where M becomes infinitely 
large (the Born-Oppenheimer approximation). 

To obtain these unique solutions we require knowledge of the analytic structure 
of the functions Ln K ( z , )  and Ln L(z2 )  (Lahoz 1986), for which purpose it remains 
only to analyse the zeros of K ( z , )  and L ( z 2 ) .  

Clearly K ( z , )  is analytic in the entire complex z ,  plane except for cuts along 
z1  E (2, + 2;) where x, E 2, e -xl E 6;. The only possible zeros of K ( 2,) are seen to 
be on the real axis outside the cuts L 1 ,  iI, and are at z ,  = *xF where x: is the positive 
root (if any) of the equation 

rs 

"4 
- 1 = ~ [ K ' " ( x ~ ) + M K ' " ( M x ~ ) ]  x p > t q + 1  

where 

X I  +;q - 1 
K'')(x,) = 2q + [ 1 - (4s + x,)'] In 

(4.24) 

(4.25) 

One can show that (4.24) has either one solution or no solution, according as q s q, 
or q > q, respectively, where q, is given by 

xF(q1) = $41 + 1. (4.26) 

Consider the behaviour of K+(x,) as M is increased continuously from M = 1. It can 
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3.0- 

be shown (Lahoz 1986), and figures 5-11 render this clear, that as M increases the 
dominant contribution to Re K+(x,) comes from (arS/.rrq3)MK(')(Mx,) in the region 
O <  x1 < ~ ( 1 ~ )  and from ( a r , / ~ q ~ ) K ( ~ ) ( x , )  in the region x1 > x(IM) where xiM)- O(M- ' ) ,  
6 > 0. Similar behaviour is observed for Im K+(x,). 

More importantly we see that for q < q1 the real phase S,(x,) defined by 

K*(Xl) = IK*(Xl)l exp(*i6,(x1)) (4.27) 

,,M:2 

Figure 5. Plot of M K " ' ( M x , )  against xI for values 
of the mass ratio M equal to 1 ,  2, 3 ( 9  = 0.5,  r, = 1). 

Figure 6. _Plot of Re K + ( x , )  = K ( x , ) ,  Im K + ( x , )  = 
( 4 a r , / q 2 ) N , ( x , ) ,  and the phase angle 6,(x,) for mass 
ratio M = 1 ,  r, = 1 and momentum transfer 9 = 0.5 < 
qmaX = 0.729, where q1 = q2 = qmax .  

2.0 

1.0 

0 

Figure 7. Same as figure 6 but at a momentum transfer 9 = 1.0 > qmax = 0.729. 
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8 0- 

6.0 - 

6.0- 

- rK (x l l  4.0 - 
4 .0 -  
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-1.0- 

-3.0- 

5.0- 

4.0- 

1 0 -  

-2.01 - 2 . 0 4  

Figure 8. Plot of -Re K + ( x , )  = K ( x , ) ,  Im K ,  = 
( 2 a r , / q 2 ) [ ~ ( x ) + M N 1 ( M x l ) ]  and the phase angle 
S,(x,) for mass ratio M = 2, r, = 1 and momentum 
transfer 9 = 0 . 5 < 9 , ,  where ~ ~ ( 9 ~ ) = ~ 9 ~ + 1 .  

Figure 9. Same as figure 8 but at a momentum 
transfer 9 =  1.0>9,. 
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or, equivalently, 

C ~ ~ ( X , )  = -al(-x1) = Tan-'(Im K+(x,)/Re K+(x,))  (4.28) 

where Tan-' indicates in general any value of the multivalued inverse tangent function 
which is continuous on L l ,  is equal (for the particular choice where S,(x,)+O as 
xl + 00) to 7~ in the region i q  + 1 G xI < x l  , whereas for q > q1 it is equal to 0 for 
xl  s i q +  1 .  This behaviour is connected with the respective presence or absence of a 
zero at x1 = *xp in the function K ( x , ) .  

The behaviour of the function L(z2) is rendered clear by figures 12-16. We see 
again that for q < q2 the real phase S2(x2) defined by 

R 

U x 2 )  = I ~ 5 d x ~ ) l  exp(*ia2(x2)) (4.29) 

where x;(q2) = M ( i q 2 +  1) and satisfies (4.24) with xp = x;/M, or, equivalently, 

S2(x2) = -S2(-x2) =Tan-' (Im L+(x2)/Re L+(x2)) (4.30) 

is equal to 7~ in the region M(4q + 1 )  s x2 S x;, whereas for q > q2 it is equal to 0 for 
x2 3 M(4q + 1 ) .  

Gl(zl)G'(-z') = v:l[l+ P ( Z l ) l [ l +  ~ ~ - ~ ' ~ l J o ~ ~ ~ l ~ J o ~ - ~ ~ , ~  

It is straightforward to show that (Lahoz 1986) 

(4.31) 

The integral in (4.31) can be simplified by considering a suitable contour integral 

I 
Figure 12. Plot of K " ' ( x , / M ) / M  against x2 for values of the mass ratio M equal to 1, 2 
and 3 ( q = 0 . 5 ,  r s =  1). 
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3.0 j_l 
2 0  

1 0  

n 

Fi_gure 13. P!ot of ImL+(x2)=(2ar ,M/q2)x  Figure 14. Same as figure 13 but at a momentum 
[N2(xz)+ M-’N2(x2/M)], Re L + ( x 2 )  = L(x,) and transfer q = 1.0> q 2 .  
the phase angle S2(x2) for mass ratio M = 2, rr = 1 
and momentum transfer q = 0.5 < q 2 ,  where x!(q2) = 
M(fq2+1). 

(Lahoz 1986). Using our results on the analytic structure of K(z,)  together with 
Cauchy’s theorem, we find by comparison with Gl( z l )  Gl( -zl) = V:l/ K ( zl) that 

(4.32) 

With use of the conditions on P(zl)  and the definition of J,(Mz,), equation (4.32) 
yields (Lahoz 1986) 

Comparison of (4.19) and (4.33) yields the unique solution 
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Figure 15. Same as figure 13 but with mass ratio 
M = 3 .  

3.0 4'h 
4.5 xz 

-1.0- 

Figure 16. Same as figure 13 but with mass ratio 
M = 3 and at a momentum transfer q = l.O> q 2 .  

Similarly, we obtain the unique solution 

I' 4 3 4 2  
M finite( B 1). 

4 < 4 2  

(4.34) 

(4.35) 

Equivalent forms of (4.34) and (4.35) are readily obtained by analogy to the one- 
component case (Bishop and Liihrmann 1978). 

As the physical quantities we are interested in, namely the four-point functions 
X,, Y2,  2, and the correlation energy E,, are expressible in terms of G 1 ( ~ l )  and 
 HI(^,) it is not necessary to obtain g ( K , ) ,  . . . , ~ ( K J .  Use of (3.24) yields the expression 
(where the momenta have been rendered dimensionless) 

(4.36) 

Similar expressions are obtained for Yz and 2,. 
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Using equation (3.5) we obtain the following relation for the correlation energy 
E ,  ('E -Eo=(~'FIHI~)-(~FIHI~F)): 

y2;M,M;(9)-2 r l E r I  - K 2 e r 2  ' 2 ; K l M 2 ( 9 ) )  

where we have used SI = 0 and e ,  = -e2 = e. 
Using (4.37), NI = N2 and E , =  &,N,e2/2a, gives 

Equation (4.38) is evaluated by making use of the relations (Lahoz 1986) 

(4.37) 

(4.38) 

(4.39) 

(4.40) 

(4.41) 

to give 

+L dx2[ Tan-'( Im L (x2) ) - Im L+(x2)] 
M Mi, Re L+(x2)  

(4.42) I 7r 
+=[xP-M(fq+ l)lO(qz- 9 )  . 

To understand better the constituents of the RPA correlation energy &rPA we write 

(4.43) 

where ~ t r t ~ ~ , ~  refers to the contribution from the integration regime M'-'Ll and 
refers to the term involving x:. Clearly, the term E ~ ~ ~ , ~ , ,  arises from the physical 
regime M'-'L,  corresponding to the particle-hole (p-h) continuum for which I K ,  -491 < 
1 and I K ,  + t g /  > 1 and includes the overlap between the integration regions for particles 
of type i and j (iZj); and the term &t:tl arises from an unphysical (for bare p-h 
pairs) region in momentum space. 
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In the limit M + m ,  when the heavier particles become a rigid background to the 
lighter ones, we expect the former not to vibrate and possess no phonon. When M is 
close to unity we do not expect such screening to take place so a plasmon rather than 
a phonon will be observed. By means of an analysis similar to that in the one-component 
case (Bishop and Liihrmann 1978) one sees that xp = xF( q )  essentially measures the 
plasmon dispersion curve for i =  1 and the plasmon or phonon dispersion curve for 
i = 2. With this physical interpretation of the zero z, = xp, the fact that L ( z 2 )  has no 
zero in the limit M + 03 is understood immediately, for the particles described by L( z2) 
will not vibrate and consequently possess no phonon (zero). 

By analogy with ordinary two-body potential scattering we expect the cut M'- 'L#  
of the three-point function to be a reflection of the p-h continuum for species i and 
the (possible) pole z, = xp of the same function to correspond to a bound state, which 
is a true (many p-h) collective excitation of the many-body system. We show in 0 7 
that the above interpretation is correct. 

Consider the following cases of interest: (i)  M = 1, which provides a first approxima- 
tion to an electron-hole (e-h) system with an excitonic phase (Knox 1963), (ii) 
M = 1836, which provides a description of a hydrogen plasma; and (iii) the limit M + a. 

It is straightforward to show (Lahoz 1986) that for M = 1: 

and q1 = q2 = qmax is given by 

(4.44) 

(4.45) 

which is seen to have a unique solution for all physical r, .  For r, = 1, for example, it 
has solution qmax = 0.729. The structure of the real and imaginary parts of K $ - h ( ~ , )  
together with the phase angle S;-h(~,) is highlighted in figures 6 and 7 for the cases 
q > qmax and q < qmax for q < 2. Nothing of significance changes for q > 2. 

It is easy to show that 

G;-h( z1) = H;-h( z ) - v11 exp('l dx;- ' - r h ( X , )  7r i, x i - z ,  

(4.46) 

(4.47) 

where X; = x?( q )  is as previously discussed. The equality of the three-point functions 
for each type of particle is in agreement with Chakraborty and Pietilainen (1982), who 
use a variational approach. 
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It can be shown (Lahoz 1986) that for large M, K ( x , )  has the following behaviour: 

1 +q MK"'(MX,) o< XI < O ( M - & )  

XI > O ( W 6 ) .  
S > O  (4.48) vq 

a rs 1 +T K ( ' ) ( x l )  I =q 

K(xi) 

Clearly, by choosing M sufficiently large we can make the dielectric function for 
the lighter particles K ( z , )  be as close as we wish to the one-component dielectric 
function K R ( z ~ ) ,  so that in the limit M +a K ( z , )  is equal to KR(z1) for IRe z,l>O; 
further, one can show that in the same limit G1(zl)/ VI, becomes the one-component 
three-point vertex function g R ( z 1 )  for [Re zll > 0. Physically, this result means that 
replacing the rigid background of the one-component case by a collection of heavy 
(but not rigid) particles has little effect; in particular this is the case when replacing 
the rigid background to an electron fluid by a proton fluid to obtain a zero-temperature 
hydrogen plasma, a result in agreement with Chakraborty et a1 (1983) who use a 
variational approach. 

Clearly, as M is increased the two-component system approaches the one- 
component case as the heavier particles become more rigid. This gradual change to 
a system with ordered heavy particles is supported by the behaviour of L(x2)  for large 
M (Lahoz 1986), and in agreement with Chakraborty et a1 (1983). In the limit M + 00 

the heavier particles become a rigid background to the lighter ones and we recover 
the one-component result as expected. 

The possible existence of the liquid metallic hydrogen phase at T = 0 is of consider- 
able interest. This is likely to occur in a region where the parameter rs is sufficiently 
large that our analytic solution has to be treated with care. 

5. RPA treatment of the non-Coulombic potential case 

Here V,lV22# V:,  so the matrix of the potentials V is non-singular and the original 
three-point functions g(K1), . . . , h ( ~ ~ )  can be obtained directly from the new three- 
point functions G1(tcl), . . . , H,(K,). The non-Coulombic case does not simplify as the 
Coulombic one does and consequently, although the techniques are essentially the 
same, the former requires much greater mathematical manipulation to obtain a general 
solution for the three-point functions G I ( ~ l ) ,  . . . , & ( K ~ ) .  

It is easy to verify that, as expected, in the limit VI, + 0, the two-component equations 
decouple into two one-component systems, each neutralised by a suitable inert back- 
ground. 

Before proceeding with the solution of equations (3.26)-(3.29) we remark on the 
case q = 0. In this case, for arbitrary potentials VI,, V2,, V12, the LHS of (3.18) is zero, 
so that an analysis involving energy denominators is not possible. The limit q + 0, on 
the other hand, may be well defined. Consequently, we omit the case q = 0 in our 
analysis, whilst allowing the possibility of taking the above limit. It will be seen in 
paper I1 that the case q = 0 is intimately connected with superconductivity. 

We linearise (3.26)-(3.29) by using a generalisation of the trick employed in the 
one-component case. These manipulations yield the equations 
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where we have defined 

:I +& 

(5.3) 

To decouple (5.1)-(5.4) we introduce, for functions Zil(Kl), J ~ ' ( K ~ ) ,  in principle 
solvable linear integral equations and use the same trick as in the Coulombic case to 
obtain 

where we have defined 
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and 

where we have defined 

VI 2 

dK' Q ' ( K ;  - K 2 / M )  w( K { ) I o ( K : )  T(  K ; ) *  
P( K2) 

Similar equations are obtained for G2( K ~ ) ,  If,( K ~ ) .  
To complete the analogy between the non-Coulombic and Coulom!ic cases we 

require functional relations involving the dielectric-like functions F(  K ~ ) ,  F( K ~ ) .  It can 
be shown (Lahoz 1986) that the following relation holds: 

where the matrices W, have already been defined. From equation (5.9) and the 
definitions of F (  K ~ )  and F(  K ~ )  functional relations involving these are readily obtained. 
Clearly, equation (5.9) is the two-component generalisation of the one-component 
result. 

The method employed to solve the above linear equations is essentially the same 
as used in the Coulombic case. General solutions under certain assumptions have 
been obtained by Lahoz (1986). 

The non-Coulombic case RPA equations obtained in this section are suitable for 
studying two-component systems such as metals where the electron-electron and 
ion-ion potentials are Coulombic in nature, and the electron-ion potential found from 
solid state theory. 

6. Excited-state one- and two-body equations 

Consider a two-compartment fermion system with Hamiltonian given by equation 
(3.1). The Schrodinger equation in the excited-state formalism is given by: 

H l q e )  = E e l q e ) .  (6.1) 

Projecting equation (6.1) from the left with the np-nh states built from the filled 

(6.2) 

Fermi sea, we obtain the system of equations 

( @ F I ~ ; ,  . . . a i n a T n . .  . aq,IfI 'W=Ee(~i . .  . T ~ I ' K I A I . .  . A ~ ) A  
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which is equivalent to a system of coupled equations for the amplitudes 9; defined as 

( q l . .  . vnlW\I1A1. .  . A n ) A = ( Q F l ~ : l . .  . . u,, lqe) (6.3) 

where we have adopted the same nomenclature as in the two-component ground-state 
formalism. 

Use of the Hamiltonian under consideration and the relation 0 = (QF/HIPe) yields 

0 = ( v)+c ( p  1 T 2 q ; / p ) + 4  ( v v ' I  vv')A 
Y Ir Y Y '  

Following Emrich (1981a, b) we now make the ansatz 

1qe) = Selqg) = Se exp(SB)(QF) (6.5) 

where the g subscript/superscript corresponds to the ground-state quantity, and Se,  
SE are given by (3.8b) and ( 3 . 8 ~ )  with an e superscript. As in the ground state 
(. . . A . .  . IS', . . .) = (. . .lS:l.. . 77.. .) = 0. 

Insertion of equations (6.5) in equation (6.3) gives the decompositions 

( ~ l % l ~ ) = c  (de)(elS;lA) ( 6 . 6 ~ )  

(771  772773l%lA,A2A3) = c ~ S l 2 3 ~ 7 7 1 1 ~ ' 9 1 ~ l ~ ~ 7 7 * 7 7 3 l ~ e 2 l ~ 2 ~ 3 ~ 1  
(w) 

+ ( 77 1 772 7731 Sfl A 1 A 2 A  3) ( 6 . 6 ~ )  

where we have defined 
1 +Be &@e + +@B.  

( & e )  

To obtain the exact one- and two-body equations we evaluate 

(@F~U:, - - UInUqn * U , , H I y e ) = E e ( 7 7 1  - 7 7 n I q E I A i . .  A n ) A  (6.7) 
for n = 1,  2. The procedure by which this is done is detailed in Lahoz (1986). The 
one-body equation is 

where we have defined 

j f i  
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where the index i, . . . , 1 represents particles of type n when equal to n and 

~ ( g ) =  U -e Y:~A)(A~ = - ~ ; I A ) ( A  I 
A A 

(71 Y2 Y3 741 exk34)1 A I A 2A3A4) 

= c ~~34(Y31~:l~3)(Y1Y2Y41~;l~l~2~4) 
+ S12(Y1 Y 3 I S : l ~ l A 3 ) ( Y 2 Y 4 I S e l ~ ~ ~ 4 ) }  

+ ( Y1 Y 2 Y3 ~ 4 1  s:l A 1 A 2A 3A 4). 

(&e) 

From equations (6.8) and (6.9) it is seen that the equation for S‘, involves S’,,, 
and SB, and SB,+l. As in the two-component ground-state case, to use the equations 
in practice a truncation scheme is necessary. We employ the SUB(m, n) truncation 
and in particular the SUB( 1,2) truncation to obtain the result linking the plasmons 
and poles of the relevant three-point functions. 

In equations (6.8) and (6.9) there are two types of’(lSll), namely S; for species 
1-1,  2-2, and three types of (ISq/’l), namely Sq/‘ for species 1-1 ,  2-2, 1-2. 
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7. RPA-like treatment of l p l h  excitations in the SUB(1,2) approximation 

Consider an infinite, homogeneous and overall neutral system of spin-; particles of 
two species i = 1,2 with masses mi and charges ei.  These particles interact via the 
following pairwise spin-independent local potentials: between species i - i ,  VI, 
between species 1-2. These potentials have the momentum space representation given 
in 9 3. 

We choose our single-particle basis to consist of plane-wave states with quantum 
labels specified by equation (3.12). We now introduce the convenient notation: 

where the excited states under consideration are now eigenstates of total momentum 
with eigenvalue q. Xl= Yy = 0 by conservation of momentum and the three different 
types of (ISql) are given by (3.13). Each ofthe three S;  can have two (generally unequal) 
cases: S;ff = S;" (parallel spins) and SZf1 = SS" (anti-parallel spins). 

Consider the SUB( 1,2) approximation, i.e. put SY = 0 for i > 1 and SjB = 0 for j > 2 
and apply it to the one-body equation (6.8). After algebraic manipulation we obtain 
the following equations: 

where the superscript (1) indicates terms involving Sl, the grouping of terms is 
analogous to the ground-state case, and E ( q )  = E,( q )  - E, .  

We only write down explicitly the TRpA terms. The remaining terms can be found 
in Lahoz (1986). In equation (7.2) we have 

r 1 
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We can associate diagrams with equation (7.3). Using the standard convention and 
definitions: 

These are given by figure 17. Figure 18 represents the diagrams associated with the 
other RPA term, from which the explicit equation may be derived. 

Consider an RPA-like treatment of the one-body equation (7.2) where we solve: 

(7.4) 

Figure 17. The diagrammatic representation of the RPA-like terms in the SUB( 1 , 2 )  equation 
(7.2) for X;, as given by equation (7.3).  

Figure 18. Same as figure 17 but for Y; .  
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(7.5) 

and derive the relation between the poles of the relevant three-point functions and the 
plasmons. 

Assume the potentials to be Coulombic and that (ISiI), (IS;[) are spin independent 
as is necessarily true in the RPA. Using the two-component results (7.4) becomes 

[KI * 4 - G(4)lx;;xl(4) 

where we have made the momenta dimensionless, changed the sum to an integral in 
the standard manner, assumed k,, = kF2 = kF, introduced the more symmetric momen- 
tum variables K~ by the relation ki = K~ - i q  as before and defined p and ti as in 0 4 and 

4 4 ) =  ( m l l h 2 ) E ( d *  

Changing to cylindrical polar coordinates in the usual manner (Lahoz 1986) yields 

(7.7) 

where we have defined xi = K~ - 4 and the integrals 

Z' = dx [ fi, ( x ) + Mfi2(  Mx I ) 3 X i (x  ) Ii I 

1 ' 2 )  3 dxS[fi2(x9 + fiI(XS/M)/Ml YXX9 
I M i ,  

where Mi-'Zi, fi i(xi)  ( i  = 1,2) are well known from the ground-state results. Straight- 
forward manipulation of equation (7.7) and its particle-2 counterpart and use of the 
ground-state results yields: 

K ( G ( q ) / q ) G I ( a q ) / q )  = 0 (7.8) 

which, on further use of the functional relation (4.22), becomes 

which shows that the pole of G , ( z , )  is the negative of the zero, i.e. plasmon of the 
dielectric function K ( zl). Similar considerations yield the analogous result linking the 
pole of HI(zZ) to the plasmon of the dielectric function L ( z 2 ) .  

The non-Coulombic case analogue of the above result is derived in a similar manner 
(Lahoz 1986). The one-component result, which can be derived from our results, was 
originally obtained by Bishop and Luhrmann (1981). Clearly, the CCM yields the result 
(analogous to that in ordinary two-body potential scattering) which links the cut of 
the three-point function to the particle-hole scattering continuum and the pole to a 
bound state. Further, we see that the bound state is not a two-body bound state but 
a true (many particle-hole) collective excitation of the many-body system. 

The full two-component SUB(2,2) equations can be found in Lahoz (1986). Some- 
what surprisingly perhaps, the RPA-like SUB(2,2) equations appear not to be susceptible 
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to analytic solution, just as in the comparable one-component case. Evidently, numeri- 
cal work is required to proceed further with such a calculation. In contrast, the complete 
ladder-like (CLAD like) subapproximation to the SUB(2,2) equations is expected to 
possess an analytic solution in the two-component case, as for the one-component 
case investigated by Stevens (1984). 

8. Conclusions and further work 

In this first paper of two, we generalise the one-component CCM results in the fluid 
ground-state and fluid excited-state formalisms to two components with particular 
emphasis on homogeneous fermion systems. In the second paper we generalise the 
one-component CCM results in the BCS ground-state formalism to two components. 
The motivation for this work is that systems such as real metals and electron-hole 
plasmas in photoexcited semiconductors, and phenomena such as superconductivity, 
can be described in terms of two-component systems. The outstanding success of the 
one-component CCM naturally leads us to regard its two-component version as the 
best way to handle them. 

Consequently, in this paper we develop the two-component formalism for the fluid 
ground and excited states for Coulombic ( Vl V2, = V?2) and non-Coulombic ( Vl V2, # 
V;,) potentials, and consider the well known random-phase approximation ( RPA), 
which describes the high-density and long-range limit, in the ground-state and the 
RPA-like approximation in the excited states. 

Our RPA treatment of 2p-2h correlations using the SUB2 approximation yields 
analytic solutions for a general finite mass ratio M and an expression for the correlation 
energy in the Coulombic case. The cases M = 1, providing a first approximation to 
an electron-hole system, and M = 1836, providing a description of a hydrogen plasma, 
are investigated and found to be in excellent qualitative agreement with results from 
variational methods. The Born-Oppenheimer approximation (lim M + CO) is imple- 
mented and the correct physical result obtained. In the non-Coulombic case we indicate 
how to obtain a (possible) unique solution. We note in passing that our RPA analysis 
also provides a technique for solving certain kinds of non-linear integral equations by 
means of Muskhelishvili-Omnks theory. 

The RPA-like treatment of Ip-lh excitations using the SUB( 1,2) approximation 
yields the result linking the cut of the three-point functions introduced in the solution 
of the ground-state RPA equations to the particle-hole scattering continuum, and the 
pole of the same three-point functions to a bound state. This result, analogous to that 
obtained in ordinary two-body potential scattering theory, serves to reinforce the 
suitability of the CCM for dealing with many-body systems. 

We feel that a full SUB2 treatment of the two-component ground-state equation, 
using the RPA Coulombic result to derive insight into how best to perform such an 
extension and check the necessary numerical approximations, will prove just as success- 
ful as in the one-component case. Similar considerations (cf Stevens 1984) indicate 
the suitability of performing a complete ladder (CLAD) treatment of the SUB2 equations, 
describing the low-density and short-range limit, to obtain an analytic solution. We 
also feel that the RPA non-Coulombic potential equations obtained will provide a first 
approximation to a real metal consisting of mobile electrons with a background of 
relatively immobile ions, the ion-ion and electron-electron interactions being Coulom- 
bic in nature and the electron-ion interaction obtained from solid state theory. A full 
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SUB2 non-Coulombic treatment, analogous to that in the Coulombic case, ought to 
be attempted. 

We believe that numerical work in the excited-state formalism concerning an 
RPA-like treatment of 2p-2h excitations in the SUB(2,2) approximation should also 
be implemented. A complete ladder (CLAD)-like treatment of 2p-2h excitations in the 
SUB(2,2) approximation, analogous to that in the one-component case (cf Stevens 
1984), ought to be attempted in order to obtain an analytic solution and the two- 
component analogue of the ‘de-excited states’, i.e. states with negative excitation energy 
and, consequently, lower energy than the so-called ground state. These ‘de-excited 
states’ are intimately connected with phase transitions and the question of what is the 
best choice of model state for solving the Schrodinger equation. A full discussion of 
these points is deferred until we discuss superconductivity in paper 11, where by 
studying the necessary conditions for superconductivity in our two-component formal- 
ism, we find we are able to compare the different model states investigated and shed 
light on the problem of phase transitions and what particular approximations yield 
these. 
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